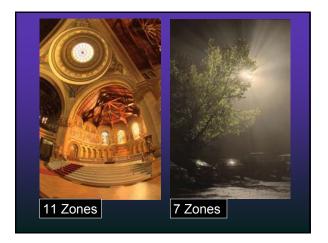

Photographic Tone Reproduction for **Digital Images** Erik Reinhard Utah Mike Stark Peter Shirley Jim Ferwerda Cornell

Tone Reproduction Problem Watch the light Compare with projection on screen

Overview Tone reproduction is difficult when Dynamic range is high - Algorithm is used in predictive context Requirements of a practical operator Skip many details (see paper for those)

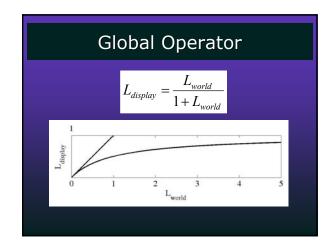


Zones Lin: 1 2 4 8 16 32 64 128 256 Log: 1 2 3 4 5 6 Each doubling of intensity is new zone Nine zones with visible detail can be mapped to print, fewer to displays Zones are a good measure of dynamic range

Typical Dynamic Ranges

- Photographs: 4-6 zones with visible detail (after digitizing)
- HDR images: 7-11 zones with visible detail
- Tone reproduction should not be very difficult for most images!

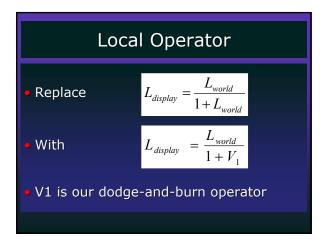
Rest of Talk:

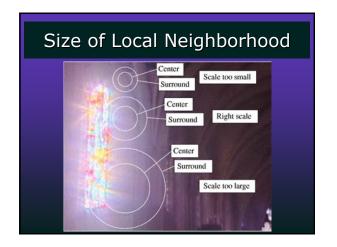

- A very simple global operator adequate for most images (up to 11 zones)
- A local operator that handles very high dynamic range images (12 zones and more)

Global vs. Local

- Global
 - Scale each pixel according to a fixed curve
 - Key issue: shape of curve
- Local
 - -Scale each pixel by a local average
 - Key issue: size of local neighborhood

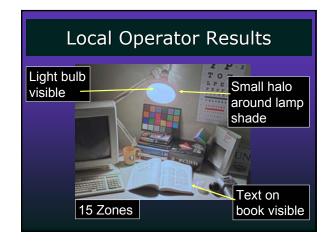
Global Operator


- Compression curve needs to
 - Bring everything within range
 - Leave dark areas alone
- In other words
 - Asymptote at 1
 - Derivative of 1 at 0



Dodge and Burn

- Roughly equivalent to local adaptation
- Compute by carefully choosing a local neighborhood for each pixel
- Then take a local average of this neighborhood (which is V1)


Dodge and Burn Computation

- Compute Gaussian blurred images at different scales (sizes)
- Take difference of Gaussians to detect high contrast (Blommaert model)
- Take Gaussian at largest scale that does not exceed contrast threshold (V1)

Subtleties Gaussians computed at relatively small scales For sufficient accuracy, computation rewritten in terms of the error function For sufficient speed, computation performed in Fourier domain

Most "high dynamic range" images are medium dynamic range This makes tone reproduction a fairly straightforward problem for most practical applications/images

Conclusions

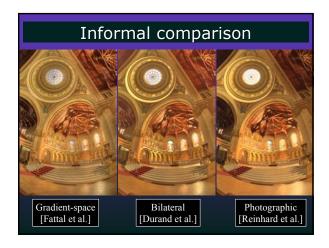
Our global operator is very simple and is adequate for most images Our local operator is more involved and compresses very high dynamic range images adequately

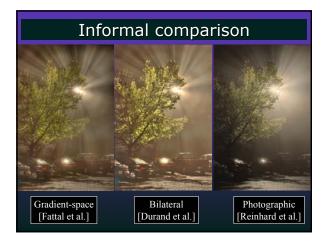
Conclusions

Further Work

- Two manual parameters:
 - Key value to determine overall intensity of result
 - White point to fix contrast loss for low to medium dynamic range images
- Both can be automated with a straightforward algorithm – see forthcoming journal of graphics tools and my web page

Acknowledgments


- Thanks to Greg Ward, Paul Debevec, Sumant Pattanaik, Jack Tumblin
- This work was sponsored by NSF grants 97-96136, 97-31859, 98-18344, 99-78099 and by the DOE AVTC/VIEWS


Erratum

Equation 1 in the paper should be:

$$L_{w} = \exp\left(\frac{1}{N} \sum_{x,y} \log(\delta + L_{w}(x,y))\right)$$

Note: source code on CDROM is correct!

